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Certain hepatic lesions found in wild fish,

che Mi cclconamnan.c.ce..t.os.n.sl including neoplasms, preneoplastic focal

aments lesions, other proliferative lesions, and

degenerative/necrotic lesions resemble those

induced by extperimental exposure of fish

4and rodents (8-1 4) to a variety of tox-

SP~J~r~ icants including carcinogens. These toxico-

athic lesions have been positively associated
nonurban

WIth exposure to xenobiotic contaminants in

~ numerous field studies on bortomfish species
from marine and estuarine coastal areas.

atave: lei ons,0, r Affected species include English sole (Pleuro-
.t ....necrot .esn.spcii.Aer. nectes vetul -21), Atlantic tomcod

...ncrti leson..ndhy...clcXl (Microgadus tomco4) (22,23), white croaker

b.ar pihe...cels.ndhep.e (Genyonemus lineatus) (13,20,24,25), mum-

'"'~ michog (Fundulus heteroclitus) (26), winter

contaminatedounder(Pleuronectes americanus) (27-342,
starry flounder (Platichthys stellatus) (33,34),

ocUrrneaM European flounder (Platichthys flesus), comn-
mondab (Lmandka limanda) (35 -31, and

others (38). Cause-and-effect relationships
ton.o.p eted from field surveys have been sup-

ported by statistical analyses (15,19,20,
0).a by.lo -term laboratory stud

and~~~ ~ ~ ~ ~~~~~~.d......in.OdS.W ies in which liver lesions identical to those

inhorescet observed in field-captured English sole (i.e.,

,~ preneoplastic focal lesions, nonneoplastic
proliferative lesions, megalocytic hepatosis)

were induced by multiple injections of an

lso:. organic-solvent extract from a sediment col-

inleneon,-occurrneo lected at a site heavily contaminated with

leinbtgnerwsrrl1 polycyclic aromatic hydrocarbons (PAHs)

If~O~id~ (3); English sole from this site in Puget
Sound are affected by high prevalences of

~toxicopathic hepatic lesions (16,18). More-

speciesanddearly......cat.tl...yover, hepatocellular carcinomas were in-

duced in rainbow trout (Oncorhynchus
inwM- mykiss) as a surrogate species by microinjec-

tion of sac-fry embryos with an organic-s
kepAtIM tract of chemically contaminated sed-

Hehiprcrlioza102 l-215(99}iments from Hamilton Harbor, Ontario

(41,44); the species at environmental risk in

~~this harbor, brown bullhead (Icta/urus nebu-

losus) and white sucker (Catostomus commer-

~~ ~ ~ ~ ~ sn:),ae affected by high prevalences of

............hepatic cholangiolar neoplasms (43). Al-

though there are no studies documenting
..........experim ntal induction in fish or rodents

..... ...the unique lesion type referred to as hydrop-

~~~~~ic vacuolation of biliary epithelial cells/hepa-

tocytes, this lesion has been circumstan-

tially (27-30) and statistically associated
with contaminant exposure in winter floun-
der (31,34 and starry flounder (34). There-
fore, certain hepatic lesions in fish, especially
in comparison to lesions in other organ sys-
tems (4, are currently regarded as having
utility as histological indicators or biological
markers (biomarkers) of contaminant expo-
sure and effects (2,19-21,34,44) and have
become useful indicators of environmental
degradation in marine ecosystems.

Accordingly, in the present study, we
examined relationships between toxicopath-
ic liver lesions and chemical contaminant
levels in sediments, as well as in stomach
contents, liver, and bile using various statis-
tical approaches in three bottom-dwelling
and bottom-feeding fish species (English
sole, starry flounder, and white croaker)
sampled annually between 1984 and 1988
as part of the Pacific Coast portion of the
National Benthic Surveillance Project
(NBSP) of the National Status and Trends
Program of the National Oceanic and
Atmospheric Administration. This multi-
year study is the first to comprehensively
examine the influences of various biological
variables (fish age and gender) and contami-
nant-associated risk factors (e.g., site of cap-
ture and concentrations of selected chemical
contaminants in sediment and fish) on the
occurrence of hepatic lesions in fish species
from a broad geographic range of marine
and estuarine sites on the Pacific Coast.

Materials and Methods
Field Sampling
Fish and sediments were collected from 27
sites representing a broad gradient in types
and concentrations of environmental chemi-
cal contaminants (13); pertinent data are
presented in Table 1, and locations are

Address correspondence to M. S. Myers, En-
vironmental Conservation Division, Northwest
Fisheries Science Center, National Marine Fish-
eries Service, National Oceanic and Atmospheric
Administration, 2725 Montlake Boulevard E.,
Seattle, WA 98112 USA
We thank John Stein and three anonymous
reviewers for manuscript review; Maryjean Willis,
Tom Lee, and Pat Manning for histotechnology;
Ken Carrasco, Joy Evered, John Landahl, and
Linda Rhodes for assistance in histopathology and
statistics; Tom Hom, Margaret Krahn, and co-
workers for HPLC analyses of bile; Don Brown,
Karen Tilbury, Robert Clark, and co-workers for
organic chemical and metals analyses; Bill
Gronlund, Paul Plesha, Herb Sanborn, and co-
workers, and personnel of NOAA ships Mc-
Arthur, Miller Freeman, and R/V Sea Otter for
field operations. These studies were supported in
part by NOAA's National Status and Trends and
Coastal Ocean Programs. Mention of tradenamnes
is for information only and does not consistute
endorsement by the Department of Commerce.
Received 14 June 1993; accepted 16 November
1993.

200 ~~~~~~~~~~~~~~~~~~~~EnvironmentalHealth Perspectives200



AI- IWi Iii ; L. :

Table 1. Pacific Coast sites at which English sole, starry flounder, and white croaker were collected and sampled in 1984-1988 as part of the National Benthic
Surveillance Projecta

Location Years sampled Type of
Site category Site Site abbreviation Latitude Longitude '84 '85 '86 '87 '88 samples Species sampled
U West Harbor Island, WHIs 32043.4' 117012.4' * * c White croaker

San Diego Bay, CA
U North San Diego Bay, CA nSDBy 32043.2' 117011.3' * * * c White croaker
R Dana Point, CA DnPt 33026.7' 117041.5' * * * c white croaker
HU Cerritos Channel, CA CrCh 33045.0' 118°15.0' * * c White croaker
U San Pedro Outer Harbor, CA SPOHb 33042.6' 118015.4' * * * * c White croaker
U Long Beach, CA LnBh 33044.6' 118010.6' * * * * c White croaker
U Seal Beach, CA SlBh 33044.1' 118°08.8' * c White croaker
U San Pedro Canyon, CA SPCn 33042.0' 118015.7' * c White croaker
U West of Marina del Rey, wSMBy 33056.5' 1 18033.3' * c English sole

Santa Monica Bay, CA
U Monterey Bay, CA MtBy 36037.6' 121052.3' * * * c English sole
U Moss Landing, CA MsLg 36048.1' 121047.6' * p,b,s English sole
U San Pablo Bay, CA SPbBy 38002.9' 122017.6' * * * * * c White croaker, starry flounder
U Castro Creek, CA CsCk 37058.9' 122024.9' * * c White croaker, starry flounder
U Southampton Shoal, CA SoSh 37053.2' 122024.4' * * * * * c White croaker, starry flounder
U Oakland, CA Oakl 37047.5' 122020.3' * c White croaker
U Hunters Point, CA HnPt 37042.0' 122021.5' * * * * * c White croaker, starry flounder
HU Oakland Estuary, CA OkEs 37047.0' 122015.0' * * * c White croaker
U Redwood City, CA RdCy 36033.0' 122011.0' * * * c White croaker
R Bodega Bay, CA BdBy 38018'.3 123002.5' * * * * * c English sole, white croaker

starry flounder
U Coos Bay, OR CsBy 43022.6' 124012.5' * * * * c English sole, starry flounder
NU Columbia River Estuary, OR CIREs 46013.2' 123055.6' * * * c Starry flounder
NU Youngs Bay, OR YnBy 46010.2' 123050.1' * p,s Starry flounder
R Nisqually Reach, WA NsRh 47006.7' 122041.9' * * * c English sole
U Commencement Bay, WA CmBy 47016.7' 122025.0' * * * c English sole
U Elliott Bay, WA ElBy 47035.5' 122021.4' * * * c English sole
NU Boca de Quadra, AK BdQd 55016.5' 130032.5' * c English sole
NU Chukchi Sea, Red Dog, AK ChkS 700 1610 * c Starry flounder

Abbreviations: c, complete set of samples; p, fish pathology; b, bile analysis; s, sediment metals; U, urban site; HU, highly urban site; NU, nonurban site; R, nonur-
ban reference site.
aOnly sites at which a total of at least 15 specimens of at least one species were captured and examined histopathologically are included.

shown in Figure 1. In general, sites were in a
subtidal, sedimentary-depositional zone out-
side the zone of initial dilution of a point
source for contaminants, or outside the zone
of an authorized dumpsite, and in an area
not subject to dredging, scouring, or slump-
ing, as previously defined as criteria for site
selection in the NBSP (13). Seventeen sites
were located in or near urban embayments
and fulfilled the NBSP criteria as zones of
integration of multiple contaminant inputs;
two other sites (Oakland Estuary, Cerritos
Channel) were located in highly industrial-
ized embayments impacted by adjacent mul-
tiple point sources of contaminants; the eight
remaining sites were in nonurban embay-
ments on the basis of minimal levels of sedi-
ment contaminants (13), of which three
served as reference sites (Nisqually Reach,
Washington; Bodega Bay, California, and
Dana Point, California). Each site was repre-
sented by three stations, generally located
<0.4 km apart. Stations for sediment collec-
tion were located along the trawl lines for fish
collection. Standardized collection gear, sam-
pling methods, and navigational equipment
to determine the precise location of sampling
stations (13) were used to maximize compa-
rability of data over space and time

We collected fish by otter trawl using
netting that was not chemically treated

(13). Because toxicopathic liver lesions,
including neoplasms, are more commonly
found in older fish (21,45) fish of mini-
mum size (.15 cm, total length) were ran-
domly selected from each haul and main-
tained (<3 hr) in flowing fresh seawater
until necropsy. We collected 30-60 fish
per species for necropsy among the three
stations at each site, depending on fish
availability. Each fish was assigned a
unique field identification number, weighed
(total weight, g), measured (total length,
mm), and killed by severing the spinal
cord, followed by removal of otoliths for
age determination. The abdominal cavity
was opened, and the gall bladder, liver,
gonad, and stomach contents were re-
moved. A single tissue section <3 mm
thick from the central portion along the
longitudinal axis in grossly normal livers,
with additional sections from regions con-
taining gross lesions, and a transverse sec-
tion of the gonad were collected in cas-
settes and preserved in Dietrich's fixative
(46) for routine histological processing and
examination. We collected bile from the
gall bladder (10-12 fish/species/site) in
amber-colored glass vials and placed ap-
proximately one-half of the remaining liver
tissue (30 fish/species/site) in methylene
chloride-rinsed glass vials and froze them

at -80'C for determination of levels of flu-
orescent aromatic compounds (FACs) in
bile, chlorinated hydrocarbons (e.g.,
PCBs), and chlorinated pesticides (e.g.,
DDTs). The remaining liver tissue from
30 fish/species/site was placed in a plastic,
acid-rinsed vial and stored frozen (-800C)
until analyzed for selected trace elements
(13). The total stomach contents from at
least 10 fish/species/site were removed and
composited in a methylene chloride-rinsed
glass jar (up to three composites/species/
site) and frozen (-800C) for separate organ-
ic chemical and trace element analyses.
We collected surficial sediments (top 2-3
cm) were collected using previously de-
scribed protocols (13,4).

Laboratory Analyses
Tissues preserved in the field were routine-
ly processed for paraffin embedding, sec-
tioned at a 4-5-pm thickness, and stained
with Mayer's or Gill's hematoxylin and
alcoholic eosin-Y (48). Histologic slides
were examined by a system that ensured
histopathologists were unaware of the site
of origin for each specimen. Lesion classifi-
cation followed widely accepted criteria
(18,4p). For reporting and statistical analy-
ses, we placed hepatic lesions into the fol-
lowing diagnostic categories: 1) neoplasms
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Figure 1. Map of the Pacific Coast of the contiguous United States showing locations of sampling sites.

(hepatocellular adenoma, hepatocellular
carcinoma, cholangioma, cholangiocellular
carcinoma, and mixed hepatobiliary carci-
noma); 2) putatively preneoplastic foci of
cellular alteration (FCA) (eosinophilic
focus, clear cell focus, basophilic focus); 3)
nonneoplastic proliferative lesions (Prolif)
(hepatocellular regeneration, biliary hyper-
plasia or proliferation, presumptive oval
cell proliferation, cholangiofibrosis, and
increased mitotic activity in hepatocellu-
lar/biliary epithelial cells); 4) specific or

unique degenerative/necrotic conditions
(SDN) (megalocytic hepatosis, hepatocel-
lular nuclear pleomorphism, and, rarely,
spongiosis hepatis); 5) nonspecific necrotic
lesions not associated with visible infec-
tious agents (necrosis) (hepatocellular or

biliary coagulative necrosis, hyalinization,
pyknosis, and karyorrhexis); and 6) hy-
dropic vacuolation of biliary epithelial cells
or hepatocytes (HydVac). The microscopic
anatomy of lesions in categories 1-5 is
documented in English sole (15-18).

Hydropic vacuolation is a unique lesion
visualized by light microscopy as a severe

hydropic ballooning of the cytoplasmic
space, and by transmission electron mi-
croscopy as massive distension of the per-

inuclear cisternae of the rough endoplas-
mic reticulum (27-29,49-51). All cases of
hydropic vacuolation in this study showed
a diffuse distribution of affected cells; in
contrast to observations in winter flounder
(27-29,49-51), focal or nodular lesions
consisting of hydropically vacuolated cells
were rarely detected and only in white
croaker.

We determined fish age for a subset of
the total number of specimens in each tar-

get species. This subset consisted, at a min-
imum, of the entire sample for a particular
species collected in at least one cycle within
a geographic area (e.g., San Francisco Bay,
Puget Sound, southern California). Age
was determined by counting the number
of clearly defined opaque zones of whole
otoliths (53), or, in the case of white

croaker otoliths, which cannot be reliably
aged by this method, by a specialized tech-
nique involving embedding and sectioning
(54). For the remaining fish, age was esti-
mated from length using gender-specific
age-length curves constructed for each
species from particular geographic areas
(40). Sample sizes for these age-length
curves are given in an NBSP document
(40) and generally ranged from 30 to 120.
When gender data were not available or
where insufficient numbers of a gender
prevented meaningful age-length regres-
sion, age was estimated from age-length
equations for combined genders.

We analyzed sediments and stomach
contents for a broad spectrum of PAHs,
chlorinated hydrocarbons (CHs), and
selected trace elements (13,47,55-57).
Liver tissues were analyzed for selected
CHs and selected trace elements, but not
for PAHs due to the extensive metabolism
of these labile compounds to more polar
biliary metabolic products (58). Therefore,
FACs in bile were measured using the pro-
cedures of Krahn et al. (59,60) to estimate
PAH exposure in fish.

Although levels of many individual
PAHs (n = 23), CHs (n = 21), and trace
elements (n = 15) were determined in sedi-
ments, stomach contents, and liver tissue
(CHs and trace elements only) (56,5X), lev-
els of chemical groups were also computed
for reporting purposes and statistical analy-
ses. Concentrations of PAHs and CHs in
sediments and stomach contents and CHs
in liver were grouped into the following
categories: low molecular weight PAHs
containing two to three benzene rings
(ELAHs), high molecular weight PAHs
containing four to six benzene rings
(EXHAHs), polychlorinated biphenyls
(XPCBs, including tri- to decachloro-
biphenyls), XDDTs (DDT and its deriva-
tives, DDD and DDE), chlordanes (a-
chlordane and trans-nonachlor), dieldrin,
and hexachlorobenzene. Specific com-
pounds and concentrations in each of these
classes are documented elsewhere (40,56).
For biliary FACs, the data are reported (56)
as total levels of compounds fluorescing at
wavelength pairs appropriate for metabo-
lites of benzo[a]pyrene (FACs-H) and
naphthalene (FACs-L), which are common
higher and lower molecular weight aromat-
ic compounds, respectively, in urban sedi-
ments (60). For the essential or toxic ele-
ments in sediments, stomach contents, and
liver, two groups were formed on the basis
of their pattern of strong covariance in sedi-
ments (13) as shown by principal compo-
nents analysis (61): metals 1 consisted of
the summed individual concentrations of
copper, zinc, lead, and tin, and metals 2
was composed of summed individual levels
of nickel, chromium, and selenium.
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Statistical Analyses
To determine if significant differences in
lesion prevalences in a particular species
existed between the reference site and the
individual test sites, we computed the G-
statistic (62) using the lesion prevalence at
the closest reference site as the expected
value (Table 1). Analyses were performed
on site-specific lesion prevalence data for
the five years combined, and the critical
level of significance was set at p <0.05.

We used stepwise logistic regression
(63) to identify statistically significant rela-
tionships between potential risk factors and
lesion occurrence. This epidemiological
method is commonly used on binomial or
proportional data to examine the influence
of multiple risk factors on the probability
of disease occurrence as well as exposure-
response relationships and allows for
simultaneous adjustment for risk factors
included in the regression by iterative
model fitting. This method has been suc-
cessfully applied to the epizootiology of
hepatic and/or renal lesions in English sole
(19-21), rock sole and starry flounder
(34), winter flounder (31,32), common
dab (36), and European flounder (37).

Contaminant classes evaluated as risk
factors for hepatic lesions were: XHAHs
and XLAHs in sediments and stomach
contents; XPCBs, XDDTs, hexachloro-
benzene, chlordanes, dieldrin, and metals 1
and metals 2 in sediments, stomach con-
tents, and liver tissue; and FACs-L and
FACs-H in bile. Although specific PCB
congeners were included in the XPCBs
class, unique congeners were not assessed
as risk factors. These chemical classes were
selected for analyses relating contaminant
exposure to disease risk because they are
common indices of urban-associated an-
thropogenic pollution (13,25) and repre-
sent broad classes of chemicals with docu-
mented toxic or carcinogenic potential in
vertebrates (64), including fish (1).

Logistic models were fitted using the
PECAN module of the EGRET statistical
package, version III (Statistics and Epi-
demiology Research Corporation, Seattle,
Washington). Risk factors were considered
significant at p <0.05, with independent
analyses performed for all lesion categories.
We performed two types of analyses. The
first determined the calculated odds ratio
as an estimate of relative risk for lesions in
individual fish in relation to the variables
of site, gender, and age or estimated age.
In this analysis the odds ratio represents
the degree of association between a risk
factor and lesion occurrence (65) as deter-
mined from variable coefficients of the
logistic regression equations (66,67). We
calculated odds ratios for lesion categories
at a site and interpreted them relative to
the lesion occurrence at the reference

site(s) for each species. Increased probabili-
ties of lesion occurrence were indicated by
odds ratios greater than 1.000. Odds ratios
for age were interpreted for each additional
year in age. Because separate chemical
analyses for tissues from individual fish
were not performed, risk factors of actual
chemical exposure could not be assessed in
this analysis.

The second analysis determined the
significance of the relationships between
prevalences of lesions at the sampling sites
and discrete risk factors, such as levels of
contaminants in sediments and fish tissues,
while adjusting for mean fish age and gen-
der ratio. Each year's data for a species at a
site were treated as an independent occur-
rence. We performed separate analyses for
each contaminant class (risk factor) dis-
cussed above, with results expressed as the
proportion of variation in lesion prevalence
attributable to significant risk factors. As
an adjunct analysis, the significance
(p<0.05) of correlation coefficients for con-
centrations of different chemical classes
within the same compartment (e.g., sedi-
ment) and concentrations of the same
chemical class among the compartments
(e.g., PCBs in sediment and liver) was
computed (62). These correlative data are

reported in full elsewhere (40). Because
concentrations of risk factors assessed in
this analysis were often significantly corre-
lated or covariant (40,56), it was not math-
ematically possible to include all risk fac-
tors into one multivariate analysis. Con-
sequently, we evaluated relationships
between concentrations of chemical classes
and lesion prevalences at the sites separate-
ly, adjusting for age and gender.

Results
Chemical Characterization of
Sediments and Fish Tissues
Maximal mean concentrations of most
organic contaminants and essential and
toxic elements in sediment and fish tissues
were present in the highly urbanized areas,
and many CHs were extensively bioaccu-
mulated in liver. However, no correlations
were found between concentrations of
most of the trace elements measured in
sediment and liver (56,57). The highest
levels of organic contaminants were found
at urban sites in Puget Sound, San Fran-
cisco Bay, the Los Angeles vicinity, and
San Diego Bay. Although it is not possible
to present the entire chemistry data set
here, examples of maximal mean concen-
trations in sediments, liver, and bile are

Table 2. Maximal mean concentrations of selected chemical contaminants in sediments and fish tissues
collected at selected sites sampled on the Pacific Coast in the National Benthic Surveillance Project
(1 984-1988)a

Geographic areas (sites)
Chemicals Puget Sound San Francisco Bay Los Angeles area San Diego Bay
Sediments
XLAHs 1,300 (ElBy) 1,600 (HnPt) 340 (wSMBy) 340 (nSDBy)
XHAHs 4,600 (ElBy) 8,700 (HnPt) 1,300 (SP0Hb) 2,800 (nSDBy)
X:PCBs 500 (ElBy) 260 (OkEs) 410 (SPOHb) 430 (nSDBy)
XDDTs 17 (ElBy) 470 (SoSh) 670 (SPOHb) 70 (WHIs)
Chlordanes 1 (CmBy) 6(OkEs) 15(LnBh) 3(nSDBy)
Dieldrin 2 (ElBy) 3 (OkEs) 1 (LnBh) 0.1 (nSDBy)
Hexachlorobenzene 5 (CmBy) 1 (HnPt) 1 (SPOHb) 0.1 (nSDBy)
Metals 1 420 (ElBy) 240 (HnPt) 400 (LnBh) 410 (nSDBy)
Metals 2 150 (ElBy) 730 (SPbBy) 140 (SlBh) 60 (nSDBy)
Liver tissue
XPCBs 11,000 (ElBy, ES) 7,000 (HnPt, SF) 15,000 (SlBh, WC) 8,400 (WHIs, WC)

6,800 (OkEs, WC)
X:DDTs 1,100 (ElBy, ES) 1,900 (SPbBy, SF) 26,000 (SPOHb, WC) 1,400 (nSDBy, WC)

1,800 (HnPt, WC)
Chlordanes 250 (CmBy, ES) 330 (HnPt, SF) 1,700 (LnBh, WC) 190 (nSDBy, WC)

260 (OkEs, WC)
Dieldrin 34 (CmBy, ES) 300 (HnPt, SF) 190 (LnBh, WC) 50 (nSDBy, WC)

170 (RdCy, WC)
Hexachlorobenzene 150 (CmBy, ES) 12 (HnPt, SF) 9 (LnBh, WC) 4 (nSDBy, WC)

8 (OkEs, WC)
Biliary FACs
FACs-H 1,000 (ElBy, ES) 390 (SoSh, SF) 2,900 (CrCh, WC) 2,300 (WHIs, WC)

760 (OkEs, WC)
FACs-L 150,000 (ElBy, ES) 160,000 (SPbBy, SF) 220,000 (CrCh, WC) 133,000 (nSDBy)

140,000 (OkEs, WC)
Abbreviations: LAHs, low molecular weight polycyclic aromatic hydrocarbons; HAHs, high molecular
weight polycyclic aromatic hydrocarbons; PCBs, polychlorinated biphenyls, FACs-H, aromatic com-
pounds fluorescing at benzo[a]pyrene wavelengths; FACs-L, aromatic compounds fluorescing at naph-
thalene wavelengths; ES, English sole; SF, starry flounder; WC, white croaker.
aConcentrations shown are in ng/g (dry weight), except for biliary FACs concentrations (ng/g, wet
weight). See Table 1 for site abbreviations.
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presented in Table 2. Further information
on levels of specific chemicals measured in
sediments, stomach contents, liver, and
bile used in the logistic analyses below are
in previously published reports (13,14,24,
25,47,56,57,68).

Lesion Occurrence
English sole. Among the northern sites
(Fig. 2A), prevalences of neoplasms, Prolif,
and SDN were higher at both the Com-
mencement Bay and Elliott Bay sites in
Puget Sound than at the reference site.
Elliott Bay sole also had higher prevalences
of FCA and necrotic lesions. HydVac did
not occur. Prevalences of neoplasms and
necrotic lesions were <10%, with higher
prevalences of FCA, Prolif, and SDN in
sole from these two urban sites. No lesions
were detected in sole at the Boca de Quad-
ra site, and Coos Bay sole were affected
only with necrotic lesions. For the south-
ern sites (Fig. 2B), prevalences of all lesions
were low (<10%) at all sites, except for the
Monterey Bay site where higher preva-
lences of Prolif, SDN, and necrosis were
detected.

Substantially elevated relative risks of
neoplasms, FCA, Prolif, and SDN were
calculated for sole from Elliott Bay (Table
3). For example, a sole from Elliott Bay
was >34 times more likely to be affected by
a neoplasm than a fish of comparable age
and gender from the reference sites. Res-
idence at Monterey Bay was associated
with an increased risk of necrosis. Age was
a risk factor only for neoplasms, and males
were more likely to be affected by necrotic
lesions. Age ranges and means + SD (in
years) of sole affected with lesions were:
neoplasms (5-9, 6.1 ± 1.5); FCA (3-9, 5.3
± 1.8); Prolif (3-10, 4.8 ± 1.7); SDN
(1-10, 4.6 + 1.7); necrosis (1-9, 4.4 +
1.9).

Starry flounder. Prevalences of lesions
other than HydVac were generally below
10%, and neoplasms were not detected

(Fig. 3). Significant intersite differences in
prevalences other than for HydVac were
shown only for FCA and SDN in flounder
from Hunters Point in San Francisco Bay.
HydVac was detected at eight of the nine
sites; however, higher prevalences were
shown only at three urban sites within San
Francisco Bay.

For FCA there was an increased risk,
relative to the reference site at Bodega Bay,
in flounder from the urban sites of Castro
Creek and Hunters Point in San Francisco
Bay, whereas the relative risk for SDN was
higher only at Hunters Point (Table 3).
Several other sites were associated with an
increased risk of HydVac, and, with the
exception of Youngs Bay, all were urban
sites within San Francisco Bay. The highest
relative risks, especially for HydVac, were
generally shown at the urban sites of
Castro Creek and Hunters Point. Age was
a risk factor for FCA, Prolif, and HydVac.
Age ranges and means + SD (in years) of
flounder affected with lesions were: FCA
(5-14, 9.5 ± 3.5); Prolif (4 -12, 8.3 ±
1.9); SDN (2-12, 4.8 + 2.3); necrosis
(2-9, 5.3 ± 2.3); HydVac (2-16, 6.4 +
3.0). Gender was not a risk factor for any
lesion.

White croaker. All lesion categories
were detected in croaker from the northern
(Fig. 4A ) and southern (Fig. 4B) sampling
sites; HydVac was most frequently detect-
ed, at prevalences ranging from <1% to
nearly 40%. At the Bodega Bay reference
site (northern sites), FCA and necrosis
were not detected, and prevalences of all
lesions were very low. The only neoplasms
(cholangiocellular carcinomas) diagnosed
among the northern sites were in croaker
from Bodega Bay; both affected fish were
at least 11 years old (13). Several lesion
types occurred at higher prevalences at
urban sites: FCA at Hunters Point and
Redwood City; Prolif and SDN at the
Oakland Estuary; and HydVac and necro-
sis at all San Francisco Bay sites except
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Redwood City. At the southern sites,
lesion prevalences other than SDN and
HydVac were < 15%. At the southern refer-
ence site of Dana Point, prevalences of
SDN were low, HydVac prevalence was
about 10%, and neoplasms, FCA, Prolif,
and necrosis were not detected. Neoplasm
prevalences were higher in croaker from
San Pedro Outer Harbor, Cerritos Chan-
nel, and Long Beach; FCA was higher only
at the latter two sites. Prevalences of Prolif
were higher at the west Harbor Island site
in San Diego Bay, Cerritos Channel, and
the Outer Harbor and Seal Beach sites in
San Pedro Bay; higher prevalences ofSDN
were detected at Cerritos Channel and San
Pedro Outer Harbor. Southern sites with
HydVac prevalences higher than those at
the reference site were Cerritos Channel,
San Pedro Outer Harbor, San Pedro Can-
yon, and Long Beach. Prevalences of
necrosis were higher at four of the eight
southern sampling sites. Southern sites
with the most lesion categories with higher
prevalences were Cerritos Channel (all
lesions) and San Pedro Outer Harbor (five
lesions). Among sites in San Diego Bay,
croaker from the west Harbor Island site
were most frequently affected, whereas
prevalences of HydVac at San Diego sites
were lower than that at the reference site.

Except for SDN and necrosis, all lesion
types showed a higher risk of occurrence
with increasing age (Table 3). Age ranges
and means + SD (in years) of affected
croaker were: neoplasms (5-24, 10.4 +
6.3); FCA (5-16, 10.5 ± 3.7); Prolif (1-24,
7.9 + 6.3); SDN (1- 10, 4.6 + 2.9); necro-
sis (0-16, 4.4 + 4.1); HydVac (1- 23, 8.1 +
4.0). Being male was a risk factor only for
neoplasms. Urban sites in the Los Angeles
vicinity, San Diego Bay, and San Francisco
Bay were associated with increased risk of
lesion occurrence (Table 3). Sites and
lesions showing increased risks were: San
Pedro Outer Harbor (neoplasms, Prolif,
SDN, necrosis, HydVac); Cerritos Channel
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Figure 2. Prevalences of toxicopathic liver lesions in English sole captured at northern (A) and southern (B) sites in the National Benthic Surveillance Project
(1984-88). FCA, foci of cellular alteration; Prolif, nonneoplastic proliferative lesions; SDN, specific degenerative/necrotic lesions; HydVac, hydropic vacuolation;
Necrosis, nonspecific necrotic lesions. The number of fish examined per site is given below each site abbreviation (see Table 1 for site definitions). The refer-
ence site is shown at the far right of the graph and is indicated by braces. (*) Lesion prevalences significantly higher than those detected at the reference site (p
<0.05).
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Table 3. Calculated odds ratios/relative risks for significant (p < 0.05) risk factors (site of capture, age,
and gender) for six categories of hepatic lesions in English sole (ES), starry flounder (SF), and white
croaker (WC)a

Lesion
Neoplasms
GM = 0.139E-3, ES

= LND, SF
= 0.793E-3, WC

Foci of cellular alteration
GM = 0.185E-2, ES

- 0.423E-3, SF
- 0.288E-3, WC

Proliferative lesions
GM = 0.915E-2, ES

= 0.285E-2, SF
= 0.297E-1, WC

Specific degeneration/necrosis
GM = 0.344, ES

=0.105E-1, SF
= 0.171E-1, WC

Hydropic vacuolation
GM = LND, ES

- 0.180E-1, SF
- 0.324E-1, WC

Necrosis
GM = 0.659E-1, ES

= 0.228E-1, SF
= 0.643E-2, WC

Species Risk factor
English sole Elliott Bay

Age
White croaker San Pedro Outer Harbor

Age
Male

English sole Elliott Bay
Starry flounder Castro Creek

Hunters Point
Age

White croaker Cerritos Channel
Age

English sole Elliott Bay
Starry flounder Age
White croaker Cerritos Channel

San Pedro Outer Harbor
Oakland Estuary
Age

English sole Elliott Bay
Starry flounder Hunters Point
White croaker Cerritos Channel

San Pedro Outer Harbor
Oakland Estuary
Long Beach

Starry flounder Southampton Shoal
Hunters Point
Castro Creek
Young Bay
Age

White croaker Castro Creek
Oakland Estuary
San Pablo Bay
Southampton Shoal
Oakland
Hunters Point
Redwood City
Long Beach
San Pedro Outer Harbor
Seal Beach
Cerritos Channel
San Pedro Canyon
West Harbor Island
Age

English sole Monterey Bay
Male

Starry flounder None
White croaker Cerritos Channel

San Pedro Outer Harbor
San Pedro Canyon
Oakland Estuary
Hunters Point

Odds ratio/relative risk
34.190
1.750

12.390
1.442

31.447
12.430
12.640
6.784
1.396

15.340
1.333

18.790
1.257

88.590
26.740
112.000

1.380
24.120
9.326

30.210
11.810
7.301
3.606
5.925

15.630
6.037
6.297
1.271
7.073
7.972
7.454
3.495
11.950
5.229
7.292

22.490
12.490
15.650
13.510
6.430
4.523
1.277
4.400
2.688

15.550
9.238
19.440
21.650
5.437

aOdds ratios for the site of capture are interpreted relative to the combined data for the reference sites,
except for hydropic vacuolation in croaker where the reference site was Bodega Bay. Odds ratios for
age (in years) represent the effect of each additional year of age on the odds of disease occurrence.
GM, grand mean; N= 413 (ES), 718 (SF), 1333 (WC); LND, lesion not detected.

(FCA, Prolif, SDN, necrosis, HydVac);
Long Beach (SDN, HydVac); San Pedro
Canyon (HydVac, necrosis); Oakland
Estuary (Prolif, SDN, HydVac, necrosis);
and Hunters Point (HydVac, necrosis). An
increased relative risk for HydVac was
determined at the following additional
sites, as compared to the prevalence at
Bodega Bay: in San Francisco Bay, Castro
Creek, San Pablo Bay, Southampton Shoal,
Oakland, and Redwood City; in the Los
Angeles vicinity, Seal Beach; and in San
Diego Bay, West Harbor Island.

Lesion Prevalences and Chemical
Risk Factors

The results of logistic analyses testing the
significance of chemical parameters in sedi-
ments (potential exposure), stomach con-
tents (dietary uptake), liver tissue (bioaccu-
mulation), and bile (estimate of recent
exposure to and metabolism of PAHs) as
risk factors for hepatic lesions are presented
in Tables 4-6.

English sole. Of chemicals in sediment,
the XLAHs, XHAHs, XPCBs, and metals
1 were risk factors for all lesions in sole

except necrosis, which showed no risk fac-
tors (Table 4). Separate risk factors ac-
counted for between 38 and 68% of the
intersite variation in prevalence. XDDTs
and chlordanes were risk factors for SDN
and Prolif, but explained less variation
than the above factors. Dieldrin was also a
risk factor for neoplasms and Prolif.
Concentrations of chemical classes in sedi-
ment, especially the XLAHs, XHAHs,
XPCBs, and metals 1, were significantly
covariant (40,56), with correlation coeffi-
cients (r) ranging from 0.841 to 0.997.
Other covariant sediment measures were:
XDDTs versus EPCBs (r = 0.430) and
chlordanes (r = 0.773); dieldrin versus
XLAHs (r = 0.473), XHAHs (r = 0.549),
and metals 1 (r = 0.576); and chlordanes
versus metals 1 (r= 0.576).

In stomach contents, XLAHs, XHAHs,
XDDTs and XPCBs were risk factors for
FCA, SDN, and Prolif. The only risk fac-
tor for neoplasms was chlordanes, which
was also a risk factor for SDN and Prolif.
Metals 1 was a risk factor for FCA, SDN,
and Prolif. Chemical concentrations in
stomach contents were also covariant
(0.692<.r0.999), excepting PAHs and
chlordanes, chlordanes and metals 1, and
,PCBs and metals 1 (40).

Biliary FACs-L or -H were risk factors
for all lesions except necrosis. Hepatic con-
centrations of XDDTs and XPCBs were
risk factors for neoplasms, FCA, SDN, and
Prolif; XDDTs was a risk factor for necro-
sis. Levels of some risk factors in bile and
liver were covariant; FACs-L versus XDDTs
(r =0.651) and XPCBs (r = 0.819), and
XDDTs versus XPCBs (r= 0.656).

Stary flounder. Several chemical classes
were risk factors for the lesions FCA, SDN,
and HydVac in flounder (Table 5). In sedi-
ments, XLAHs, XHAHs, XPCBs, and met-
als 1 were risk factors for SDN and Hyd-
Vac; hexachlorobenzene was also a risk fac-
tor for HydVac. The XLAHs, XHAHs, and
XPCBs explained simlar proportions of the
prevalence variation for SDN, and their sed-
iment concentrations covaried (0.362 < r.
0.999) (40). Moreover, metals 1 concentra-
tions in sediment covaried with XLAHs (r =
0.557), XHAHs (r = 0.657), XPCBs (r =

0.811), and hexachlorobenzene (r = 0.777).
For HydVac, similar proportions of the
prevalence variation were accounted for by
XLAHs, XHAHs, XPCBs, hexachloroben-
zene, and metals 1, the concentrations of
which were covariant (0.362< r<0.999);
hexachlorobenzene most strongly covaried
with XPCBs (r = 0.709) and metals 1 (r=
0.777).

In stomach contents, several risk factors
were identified for FCA and HydVac. The
covariant measures of XDDTs and 1 and
XPCBs (r = 0.845) were risk factors for
FCA, whereas XHAHs, XDDTs, and
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Figure 3. Prevalences of toxicopathic liver lesions in starry flounder at sites sampled in the National
Benthic Surveillance Project (1984-88). FCA, foci of cellular alteration; Prolif, nonneoplastic proliferative
lesions; SDN, specific degenerative/necrotic lesions; HydVac, hydropic vacuolation; Necrosis, nonspecif-
ic necrotic lesions. The number of fish examined per site is given below each site abbreviation (see Table
1 for site definitions). The reference site is shown at the far right of the graph and is indicated by braces.
(*) Lesion prevalences significantly higher than those detected at the reference site (p < 0.05).

X;PCBs were risk factors for HydVac; con-
centrations of the CH groups were covari-
ant (0.669< r<0.857). None of the CHs
were correlated with PAHs in stomach con-
tents (40).

Chemical risk factors identified in liver
and bile were similar to those in sediments
and were mainly shown for SDN and
HydVac. The covariant XPCBs, chlordanes,
and dieldrin (0.713<.70.868) were risk fac-
tors for SDN. Metals 1 in liver was a risk
factor for SDN, reflecting its lack of correla-
tion with any CHs or PAHs (40). PAH
exposure as reflected by the correlated mea-
sures of FACs-H and -L (r = 0.814) was a
risk factor for HydVac, as were the covari-
ant measures of liver XDDTs, XPCBs,
chlordanes, and dieldrin (0.691<.7.0.868).

White croaker. At least one chemical
class in sediment was a risk factor for all
lesions in croaker, excepting neoplasms
(Table 6). JLAHs and RHAHs were risk
factors for FCA, while XDDTs, XPCBs,
chlordanes, and metals 1 were risk factors for
SDN and HydVac. Dieldrin and hexa-
chlorobenzene were also risk factors for
HydVac; XDDTs and XPCBs were risk fac-
tors for Prolif. Risk factors for necrosis were
XLAHs, RHAHs, and XPCBs. PAH mea-
sures in sediment were covariant (r= 0.967),
as were metals 1 and RHAHs (r = 0.544).
PAH measures also covaried with XPCBs
and hexachlorobenzene (0.362<7.0.422), as
did XPCBs with metals 1 (r = 0.839).
Chlordanes covaried with metals 1 (r =
0.595) and XPCBs (r = 0.514), which in

turn covaried with XDDTs (r = 0.445).
Dieldrin levels covaried with all chemical
classes in sediment (0.306<..0.700) except
XDDTs. Overall, PAHs in sediments were
associated with FCA and necrosis, whereas
the groups within the CHs and metals 1
were risk factors for SDN, HydVac, Prolif,
and necrosis.

Chemical risk factors in stomach con-
tents, primarily CHs, were associated with
SDN, HydVac, and Prolif. Risk factors for
SDN were XDDTs, XPCBs, chlordanes,
and metals 1; risk factors for HydVac were
EXDDTs, XPCBs, and chlordanes. Con-
centrations of the CHs were covariant
(0.624<.<0.727). The correlated measures
of lDDTs and XPCBs (r = 0.688) were
risk factors for Prolif; hexachlorobenzene
appeared to be independent because it was
not covariant with XDDTs or XPCBs
(40). Hexachlorobenzene was the only risk
factor for necrosis.

Levels of biliary FACs-L or -H were
associated with FCA, SDN, HydVac,
Prolif, and necrosis. Risk factors in liver
included XDDTs for SDN, HydVac,
Prolif, and necrosis; XPCBs for SDN and
HydVac; chlordanes and dieldrin for
HydVac; metals 1 for SDN and Prolif; and
metals 2 for SDN and HydVac. XDDTs
as a risk factor for SDN, HydVac, and
Prolif paralleled results for sediments,
reflecting the correlation between sediment
and liver XDDTs (r = 0.772). Metals 1 and
2 were risk factors for SDN, HydVac, and
Prolif, but their levels strongly covaried
with XDDTs (0.556<..0.608), a highly
significant risk factor for all three lesions.

Discussion
Biological Risk Factors for Hepatic
Lesions

Age. The risk of occurrence of several
lesions increased with age, consistent with
other studies in bottomfish, including
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Figure 4. Prevalences of toxicopathic liver lesions in white croaker captured at northern (A) and southern (B) sites in the National Benthic Surveillance Project
(1984-88). FCA, foci of cellular alteration; Prolif, nonneoplastic proliferative lesions; SDN, specific degenerative/necrotic lesions; HydVac, hydropic vacuolation;
Necrosis, nonspecific necrotic lesions. The number of fish examined per site is given below each site abbreviation (see Table 1 for site definitions). The refer-
ence site is shown at the far right of the graph and is indicated by braces. (*) Lesion prevalences significantly higher than those detected at the reference site
(p <0.05).
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Table 4. Chemical compounds or classes of compounds in sediment, stomach contents, liver, and bile
showing significant positive associations by logistic regression (p <0.05) with site-specific prevalences of
selected categories of idiopathic liver lesions in English solea

p - value/% total variance
Chemical class/compartment n Neoplasms FCA SDN Prolif Necrosis
XLAHs
Sediment 22 0.020/54 <0.001/52 <0.001/45 <0.001/68 ns
Stomach contents 9 ns <0.001/65 <0.001l/75 <0.001l/73 ns
Bile (FACs-L) 20 0.032/15 <0.001/26 <0.001/35 0.002/21 ns
SHAHS
Sediment 22 0.004/48 <0.001/40 <0.001/38 0.003/55 ns
Stomach contents 9 ns <0.001/65 <0.001/75 <0.001l/73 ns
Bile (FACs-H) 20 ns 0.01/13 <0.001/22 <0.001/22 ns
X;DDTs
Sediment 22 ns ns <0.001/17 0.007/12 ns
Stomach contents 9 ns 0.003/49 <0.001l/74 <0.001/82 ns
Liver 13 0.003/49 0.001/34 <0.001/28 0.001/29 0.037/27
,PCBs
Sediment 22 0.004/53 <0.001/49 <0.001/45 <0.001/55 ns
Stomach contents 9 ns 0.004/29 <0.001/46 0.00570 ns
Liver 13 0.003/64 <0.001/60 <0.001/24 0.001/66 ns
Chlordanes
Sediment 22 ns ns <0.001/18 0.005/15 ns
Stomach contents 9 0.007/70 ns 0.002/23 0.006/40 ns
Dieldrin
Sediment 22 0.017/35 ns ns 0.001/20 ns
Metals 1
Sediment 20 0.003/57 <0.001/46 <0.001/65 <0.001/57 ns
Stomach contents 6 ns 0.003/72 0.001/l4 0.002/78 ns
Abbreviations: FCA, foci of cellular alteration; SDN, specific degenerative/necrotic lesions; Prolif, prolifer-
ative lesions; n, number of sites; ns, not significant; LAHs, low molecular weight polycyclic aromatic
hydrocarbons; HAHs, high molecular weight polycyclic aromatic hydrocarbons; PCBs, polychlorinated
biphenyls, FACs-H, aromatic compounds fluorescing at benzo[alpyrene wavelengths; FACs-L, aromatic
compounds fluorescing at naphthalene wavelenghts; ES, English sole; SF, starry flounder; WC, white
croaker.
'Analyses were performed separately while adjusting for mean age and gender ratio (female:male).
Table indicates p-value, and percent of total variance in lesion prevalence explained by risk factor
(reduction in scaled deviance).

walleye (Stizostedion vitreum) and brown
bullhead (Ameiurus nebulosus) (45,69,70),
winter flounder (27,28,31,32), English
sole (19-21), ruffe (Gymnocephalus cernua)
(71), bream (Abramis brama) (72), and
European flounder (35,3/). Specifically,
the relative risk of neoplasm occurrence in
sole and croaker increased directly with
age, as in early studies on English sole in
Puget Sound (21). The age of earliest
occurrence of neoplasms in both species (5
years) was higher than that reported in
studies in Puget Sound English sole (21),
and was probably a function of targeting
larger and older fish; the mean age of
tumor-bearing sole (-6 years) in both stud-
ies was similar. The far higher mean age of
tumor-bearing croaker (-10 years) suggests
a longer latency period in the development
of liver neoplasms, or a species-related
resistance to the effects of exposure to
hepatocarcinogenic chemicals as compared
to English sole, or both.

Preneoplastic FCA and nonneoplastic
proliferative lesions were more likely to
occur in older flounder and croaker, as
shown in English sole (21). The age of ear-
liest occurrence (5 years) and mean age in

flounder and croaker affected with FCA
(-10 years) were also far higher than in
previous studies in English sole (0+, 5
years, respectively) (21), again suggesting a
longer latency or a relative resistance in
these species to the development of precur-
sor lesions in hepatic neoplasia. This possi-
bility is strongly supported in flounder by
the fact that no neoplasms and low FCA
prevalences were detected in this study,
consistent with findings in Puget Sound
field studies (33,34,73), as well as the con-
stitutively lower activation and increased
detoxication of PAHs demonstrated in
flounder relative to English sole (74). In
contrast to a previous study (21), the pre-
sent results indicated age was not a risk fac-
tor for either FCA or nonneoplastic prolif-
erative lesions in sole. Likely reasons that
these lesions were not linked to advancing
age in this study are the lower sample size
(413 versus 1083) and the lower lesion
prevalences detected as a result of selection
of a higher proportion of sampling sites
categorized as relatively uncontaminated.
In the study by Rhodes et al. (21), seven of
the eight sampling sites were located in
highly urban areas of Puget Sound with

sediments containing high levels of anthro-
pogenic contaminants (15), and hepatic
lesion prevalences were consequently far
higher than those detected here.

Age was not a risk factor for SDN in
any species, consistent with previous find-
ings in English sole (21). Moreover, the
age of earliest occurrence of SDN in all
three species (1-2 years) was similar to ear-
lier data in English sole (21) and supports
the view that lesions in this category are
inducible over a shorter time frame than
neoplasms, FCA, or proliferative lesions
and may represent the earlier-occurring
cytotoxic effects of exposure to hepatotoxi-
cants and carcinogens (18). The risk of
HydVac was associated with increasing age
in both flounder and croaker, as in winter
flounder (28,31,32) and rock sole (Pleuro-
nectes bilineata ) (34). However, consider-
ing the age of earliest occurrence for
HydVac (1 year), it is clearly inducible
over a shorter time frame than FCA or
neoplasms in these species. Overall, these
data suggest that lesions positively associat-
ed with age may reflect the cumulative
effects of chronic exposure to particular
hepatotoxic or hepatocarcinogenic contam-
inants.

Gender. Gender was not a consistent
risk factor for any lesion; the single excep-
tion was the predominance of neoplasms
detected in male croaker. Only six individ-
uals in this species for which gender data
were available were affected with neo-
plasms, of which five were males. Because
of the low number of cases, this relation-
ship is not conclusive. Similar field studies
have generally not shown any effect of gen-
der on risk of hepatic lesions in pleuronec-
tids (21,28), although recent studies in
winter flounder suggest gender-associated
differences in neoplasm prevalences (males
predominantly affected), possibly as a
result of gender-related differences in
migratory behavior related to reproductive
activities (31,32). In contrast, females are
more frequently affected with hepatic neo-
plasms in brown bullhead (70), common
dab (36), and European flounder (37)
from the North Sea.

Relationships between Chemical
Contaminants and Hepatic Lesions
In general, lesions were more likely to
occur in fish from sites with higher con-
centrations of chemical contaminants in
sediments. All lesion categories in at least
one species showed a chemical class in sed-
iment, stomach contents, liver tissue, or
bile as a significant risk factor. The discus-
sion below interprets the toxicological sig-
nificance, to the extent possible, of the
complex associations between lesion types
and measures of potential contaminant
exposure, actual dietary uptake, hepatic
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Table 5. Chemical compounds or classes of compounds in sediment, stomach contents, liver and bile
showing significant positive associations by logistic regression (p <0.05) with site-specific prevalences of
selected categories of idiopathic liver lesions in starry flounder

p-value/% total variance
Chemical class/compartment n FCA SDN HydVac Necrosis
XLAHs
Sediment 33 ns <0.001/17 <0.001/12 ns
Bile (FACs-L) 35 ns ns 0.012/3 ns
X-HAHS
Sediment 33 ns <0.001/19 <0.001/13 ns
Stomach contents 15 ns ns 0.027/3 ns
Bile (FACs-H) 35 ns 0.01/13 0.004/4 ns
XDDTs
Stomach contents 15 0.010/58 ns <0.001/9 ns
Liver 27 ns ns <0.001/25 ns
XPCBs
Sediment 33 ns 0.001/17 <0.001/13 ns
Stomach contents 15 0.028/46 ns 0.03/4 ns
Liver 27 ns 0.041/9 <0.001/29 ns
Hexachlorobenzene
Sediment 33 ns ns <0.001/10 ns
Chlordanes
Stomach contents 15 ns ns <0.001/16 ns
Liver 27 ns 0.013/13 <0.001/28 ns
Dieldrin
Liver 27 ns 0.001/20 <0.001/36 ns
Metals 1
Sediment 33 ns 0.004/32 <0.001/12 ns
Liver 19 ns ns ns 0.012/36

Abbreviations: FCA, foci of cellular alteration; SDN, specific degenerative/necrotic lesions; Prolif, prolifer-
ative lesions; HydVac, hydropic vacuolation; n, number of sites; ns, not significant. Neoplasms were not
detected in starry flounder, and there were no risk factors associated with proliferative lesions; LAHs,
low molecular weight polycyclic aromatic hydrocarbons; HAHs, high molecular weight polycyclic aro-
matic hydrocarbons; PCBs, polychlorinated biphenyls, FACs-H, aromatic compounds fluorescing at
benzo[ajpyrene wavelenghts; FACs-L, aromatic compounds fluorescing at naphthalene wavelengths; ES,
English sole; SF, starry flounder; WC, white croaker.
aAnalyses were performed separately while adjusting for mean age and gender ratio (female:male).
Table indicates p-value, and percent of total variance in lesion prevalence explained by risk factor
(reduction in scaled deviance). Neoplasms were not detected in starry flounder, and there were no risk
factors associated with proliferative lesions.

bioaccumulation of contaminants, and
uptake and metabolism of aromatic com-
pounds. This analysis cannot identify a
chemical etiology of the lesions detected
among the multiple species examined, but
can provide important clues as to which of
the many contaminants these species are
exposed to may play a role in the develop-
ment of lesions and an epizootiological
basis for definitive cause-and-effect labora-
tory studies. Because the chemical data for
sediments, stomach contents, and liver tis-
sue were derived from composite samples
of sediments or fish captured each time a
site was sampled, it was not possible to
assess the influence of contaminant expo-
sure on disease risk in individual fish.
Moreover, the biliary FACs data were in
the form of mean site-specific FACs-L and
-H levels from individual analyses of
10-12 specimens of a species in a particu-
lar year. Consequently, the number of
samples for a species available for logistic
analysis was relatively low.

Because most lesions detected in this
study are inducible over a subchronic to

chronic time frame, associations between
lesion prevalences and measures of actual
exposure to contaminants via dietary
uptake, metabolism (biliary FAC levels),
and especially hepatic bioaccumulation as a
measure of chronic exposure should be
regarded as more toxicologically relevant
than associations with measures of poten-
tial exposure (sediments). However, be-
cause a reliable measure of chronic expo-
sure to PAHs was not available for this
data set, PAHs in sediments and recent
PAH exposure as reflected in mean FAC
levels were used as measures of exposure.
Another major factor limiting the toxico-
logic relevance of these associations is the
paucity of information relating hepatic tis-
sue burdens of the chemical contaminants
measured in this study to pathological
effects in fish or other vertebrates.

Neoplasms and preneoplastic FCA.
Chemical risk factors for neoplasms were
identified primarily in sole, whereas the
more prevalent FCA, lesions with the gen-
erally accepted potential to develop into
hepatocellular neoplasms (2,10-12, 75,76)

and which significantly co-occur with neo-
plasms in English sole (18), were associated
with similar risk factors in all species. The
most common risk factors were sediment
PAHs, for both neoplasms and FCA in
sole, and FCA in croaker, whereas PAHs in
stomach contents were risk factors only for
FCA in sole. These relationships strength-
en those between FAC levels and preva-
lences of neoplasms in sole and FCA in
sole and croaker and are consistent with
positive associations shown between hepat-
ic neoplasms and FCA and PAH exposure
in other field and laboratory studies with
English sole (3,15, 24,25,39,59), in studies
in other species of wild fish (69,77,78) and
the hepatocarcinogenicity of genotoxic
PAHs in laboratory studies with fish
(5,41,42,79-81). XPAHs in sediment
from English sole sites ranged from unde-
tectable at the Nisqually River reference
site to 5900 ng/g in Elliott Bay, compara-
ble to levels in previous studies where the
relationship between PAH exposure and
neoplasms was first established in this
species (15). The highest level of sediment
XPAHs from croaker sites was at Hunter's
Point (10,300 ng/g), where a significant
prevalence of FCA was detected. Because
of the lower sample size in sole for stomach
contents (n = 9) than for sediments (n =
22), the absence of either PAH measure in
stomach contents as a risk factor for neo-
plasms is not anomalous considering that
contaminant levels in dietary components
only reflect exposure at a single time point
and may not be reliable indices of chronic
exposure. FCA and neoplasms are also
apparently inducible over a chronic time
frame in this species (8,18,21).

XPCBs in sediments (<500 ng/g) and
liver (<11,000 ng/g) were also risk factors
for neoplasms in sole, confirming previous
findings (19,20), as were XPCBs in sedi-
ments, stomach contents (<1100 ng/g),
and liver for FCA. XPCBs in stomach con-
tents (<490 ng/g) was a risk factor for FCA
only in flounder, whereas XPCBs was not
a risk factor for either lesion in croaker.
These concentrations appear to be toxico-
logically meaningful, independent of their
typical covariance with PAHs (40), al-
though laboratory studies are clearly need-
ed to confirm this. PCBs are not regarded
as genotoxic initiators of hepatic carcino-
genesis (82,83), do not readily form cova-
lent adducts with DNA, and show mini-
mal mutagenic activity as either individual
congeners or complex mixtures (84,85).
The more highly chlorinated PCB mix-
tures, especially the toxic coplanar con-
geners (83), are thought to act as epigenet-
ic promoters of hepatocarcinogenesis in
rodents (8-86) by virtue of cytochrome
P450 enzyme induction and consequent
hepatotoxicity and stimulation of cell pro-
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Table 6. Chemical compounds or classes of compounds in sediment, stomach contents, liver, and bile
showing significant positive associations by logistic regression (p <0.05) with site-specific prevalences of
selected categories of idiopathic liver lesions in white croaker"

p-value/% total variance
Chemcial class/compartment n FCA SDN HydVac Prolif Necrosis

ILAHs
Sediment 43 0.013/28 ns ns ns 0.001/17
Bile (FACs-L) 44 0.030/15 0.001/5 <0.001/10 0.001/32 0.003/11

X;HAHS
Sediment 43 0.025/23 ns ns ns 0.001/21
Bile (FACs-H) 44 ns 0.004/4 ns 0.037/5 ns
XDDTs
Sediment 43 ns 0.001/25 0.033/2 0.013/13 ns
Stomach contents 18 ns 0.001/39 0.001/11 0.001/32 ns
Liver 31 ns 0.001/23 <0.001/20 0.006/17 0.001/9
XPCBs
Sediment 43 ns 0.001/31 0.002/5 0.001/25 0.001/16
Stomach contents 18 ns 0.008/13 0.016/7 0.007/29 ns
Liver 31 ns 0.003/7 <0.001/11 ns ns
Hexachlobenzene
Sediment 43 ns ns 0.004/4 ns ns
Stomach contents 18 ns ns ns 0.035/15 0.037/8
Liver 31 ns ns ns ns ns
Chlordanes
Sediment 43 ns 0.005/8 <0.001/12 ns ns
Stomach contents 18 ns 0.001/37 <0.001/12 ns ns
Liver 31 ns ns <0.001/13 ns ns
Dieldrin
Sediment 43 ns ns 0.004/4 ns ns
Liver 31 ns ns <0.001/9 ns ns
Metals 1
Sediment 23 ns 0.001/26 0.001/23 ns ns
Stomach contents 8 ns 0.008/24 ns ns ns
Liver 13 ns 0.003/22 ns 0.015/33 ns
Metals 2
Liver 13 ns 0.031/15 <0.001/62 ns ns

Abbreviations: FCA, foci of cellular alteration; SDN, specific degenerative/necrotic lesions; HydVac,
hydropic vacuolation; Prolif, proliferative lesions; n, number of sites; ns, not significant; LAHs, low molec-
ular weight polycyclic aromatic hydrocarbons; HAHs, high molecular weight polycyclic aromatic hydro-
carbons; PCBs, polychlorinated biphenyls, FACs-H, aromatic compounds fluorescing at benzo[ajpyrene
wavelenghts; FACs-L, aromatic compounds fluorescing at naphthalene wavelengths; ES, English sole; SF,
starry flounder; WC, white croaker.
aAnalyses were performed separately while adjusting for mean age and gender ratio (female:male).
Table indicates p-value, and percent of total variance in lesion prevalence explained by risk factor
(reduction in scaled deviance). No risk factors were associated with neoplasms.

liberation (83,87,88). PCBs have also been
shown to enhance the formation ofFCA in
rodent liver (84,85). Modulating effects of
PCBs on hepatocarcinogenesis in rainbow
trout are variable, depending on the timing
of administration and the type of initiator
used. In aflatoxin-induced hepatic neopla-
sia in rainbow trout, PCBs are inhibitory
to hepatocarcinogenesis (89,90), whereas
they enhance neoplasm incidence when fed
simultaneously with diethylnitrosamine
(DEN) (90) or have no effect on DEN
hepatocarcinogenicity when fed before
DEN exposure (91). Studies in trout have
shown enhancement of 7,12-dimethyl-
benz[a]anthracene-initiated hepatocarcino-
genesis when followed by PCB administra-
tion (92). The existence of XPCBs as a
risk factor for neoplasms and FCA in sole
and FCA in flounder suggests a similar
promotional role that may be independent

of exposure to and covariance with the
genotoxic PAH initiators. However, high
prevalences of these lesions are present in
sole from a Puget Sound site with sedi-
ments containing extremely high levels of
XPAHs but low levels of XPCBs (16), and
similar lesions are rare in winter flounder
from a site in New Bedford Harbor, Mas-
sachusetts, with high XPCB levels in sedi-
ments and liver (3,000 ng/g and 39,000
ng/g, respectively) and relatively low sedi-
ment XPAHs (31,32). Although PCBs
may play a promotional role in the devel-
opment of neoplasms and FCA or function
as hepatotoxicants in concert with other
contaminants such as PAHs, whether PCB
exposure alone can induce these lesions in
wild fish is unknown.

XDDTs in liver (<1100 ng/g) and
stomach contents (<290 ng/g) was also a
risk factor for neoplasms and FCA in sole;

in flounder, only EDDTs in stomach con-
tents (<140 ng/g) was a risk factor for FCA,
and XDDTs was not a risk factor in croak-
er. Concentrations in sole liver are regarded
as toxicologically significant, and consider-
ing the hepatocarcinogenic or promotional
effects of these nongenotoxic compounds
in rodents (86,93) and fish (79,94), DDTs
and their derivatives should be regarded as
potential etiologic factors for neoplasms
and FCA in sole, even in light of their
covariance with liver XPCBs (40,56).

Although dieldrin in sediments and
chlordanes in stomach contents were
potential risk factors for neoplasms in sole,
extremely low levels were detected in sedi-
ments (<2 ng/g) and stomach contents
(<50 ng/g), neither was a risk factor in
liver tissue, and their levels covaried with
sediment levels of other risk factors for
neoplasms (e.g., PAHs) (40). Therefore,
neither are likely etiologic factors. Rain-
bow trout studies on the co-carcinogenic
or promotional effects of dietary dieldrin
on aflatoxin-induced carcinogenesis
showed a slight but statistically insignifi-
cant co-carcinogenic effect, and hepatic
lesions were not induced when fed alone
(95). The carcinogenic potential of this
nongenotoxic cyclodiene pesticide is equiv-
ocal and controversial in mammalian sys-
tems (96). However, because of the limit-
ed data in fish on the carcinogenic or pro-
motional activity of either of these com-
pounds, they cannot be completely dis-
counted as potential factors in the etiology
of neoplasms or FCA in wild fish.

Summed concentrations of copper,
zinc, lead, and tin (metals 1) in sediments
are also not plausible as etiological factors
for these lesions in sole because of the rela-
tively low levels detected (<420 ng/g), their
lack of hepatocarcinogenic potential (97),
and strong covariance with risk factors of
known initiating or promotional potential
in hepatocarcinogenesis such as PAHs,
XPCBs, and XDDTs. The absence of met-
als 1 as a risk factor indicating hepatic
bioaccumulation further suggests that these
trace elements are not likely factors in the
development of neoplasms or FCA. Al-
though a detailed treatment of processes
that regulate levels of bioaccumulation of
the above elements in fish is beyond the
scope of this discussion, teleosts are known
to regulate tissue levels of trace elements
such as lead, copper, and zinc via mecha-
nisms that alter their uptake, transport,
sequestration, detoxification, and excre-
tion, such that simple tissue levels may not
accurately measure exposure (98). Many
toxic metals exhibit rapid turnover in tar-
get tissues in mammals, such that no sim-
ple relationship exists between administered
dose and effective target dose, making it
difficult to relate an observed lesion to tis-
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sue concentrations or to apply the concept
of critical target tissue concentration to the
evaluation of toxicity (99).

Nonneoplastic proliferative lesions. Risk
factors for nonneoplastic proliferative
lesions, primarily represented by hepatocel-
lular regeneration, biliary proliferation, pre-
sumptive oval cell proliferation (100),
increased mitotic activity, and cholangiofi-
brosis, were similar to those for neoplasms
and FCA. These lesions are inducible by
hepatotoxic/carcinogenic chemicals in
mammals [e.g., PCBs (101)] and fish
(3,6,7) and are reliable biomarkers of cont-
aminant exposure in wild fish (2,18-20,
28,34,44). Moreover, the first four lesion
types represent early compensatory prolifer-
ative responses to cytotoxicity after carcino-
gen exposure (11) in the histogenesis of
hepatocellular or biliary neoplasia in mam-
mals (100-102), acting to fix DNA lesions
induced by carcinogen exposure into the
genome by cell proliferation.

PAHs were the most common risk fac-
tors, but only in sole (sediments, FACs-L
and -H, stomach contents) and croaker
(FACs-L and -H). XDDTs in all compart-
ments was also a risk factor in these species;
XDDTs strongly covaried with sediment
PAHs at English sole sites, but not at
croaker sites (40). XDDTs at croaker sites
was <670 ng/g in sediments, with extreme-
ly high levels detected in liver (26,000
ng/g) and stomach contents (7,600 ng/g) at
San Pedro Outer Harbor; XDDTs in sole
liver was <1,100 ng/g. DDT exposure
induces liver necrosis in brown trout
(Salmo trutta ) and guppies (Poecilia reticu-
lata) (103) and hepatocellular vacuolar
degeneration, hypertrophy, and necrosis in
four species of East Indian fish (104).
Therefore, XDDTs is regarded as a toxico-
logically meaningful risk factor for these
lesions in both species, as possible sequelae
to hepatotoxicity. This is especially true for
croaker, considering the high bioconcentra-
tion factor within liver, a target organ for
toxicity ofDDTs in mammals (96) and fish
(105).

YPCBs was also a risk factor in sole and
croaker that covaried with XDDTs and
PAHs in sediments and stomach contents,
and XDDTs in sole liver; in croaker,
XPCBs was correlated with XDDTs in all
three compartments (40). Specifically,
XPCBs in sediment (<500 ng/g in sole,
<430 ng/g in croaker) and stomach con-
tents (<1100 ng/g in sole, <3500 ng/g in
croaker) was a risk factor in both species,
but liver XPCBs was a risk factor only in
sole (<11,000 ng/g). In view of the proba-
ble mitogenic effects of PCBs on the liver
in mammals (83), their promotional po-
tency in hepatocarcinogenesis initiated by
certain genotoxic compounds, and the doc-
umented induction in mammals of lesion

types included within this category such as
cholangiofibrosis (101,106), exposure to
PCBs is regarded as a significant factor in
the etiology of these lesions, especially in
sole.

Although chlordanes, dieldrin, and
metals 1 appeared as risk factors in sole, in
view of the relatively low levels in sole
stomach contents (<50 ng/g chlordanes)
and sediments (<3 ng/g chlordanes, <2
ng/g dieldrin) and the covariance of metals
1 with more toxicologically plausible risk
factors such as PAHs, XPCBs, and
XDDTs, these pesticides and metals 1 are
not regarded as meaningful etiologic fac-
tors. Dietary uptake of hexachlorobenzene
is also not a meaningful risk factor in
croaker due to the low levels detected (<10
ng/g) (40).

Specific degenerative/necrotic lesions.
Lesions in the SDN category primarily
were megalocytic hepatosis and hepatocel-
lular nuclear pleomorphism. These unique
lesions are inducible in rodents and fish by
exposure to a spectrum of hepatotoxic/car-
cinogenic or promoting compounds, in-
cluding PAHs, PCBs, DDTs, and other
pesticides, hexachlorobenzene, aflatoxin B1,
and other naturally occurring hepatotoxic
compounds, as reviewed in Myers et al.
(18). These lesions were also induced with-
in 18 months in English sole by multiple
injections of an organic-solvent fraction
from sediments collected at a creosote-cont-
aminated site (3), and have been statistical-
ly associated with sediment PAH levels, bil-
iary FACs (20,59), and liver XPCBs in
English sole, as well as biliary FACs in rock
sole (34). Moreover, megalocytic hepatosis
significantly co-occurs with hepatocellular
regeneration in individual English sole
(18). These lesions are regarded as reliable
biomarkers of contaminant exposure in
wild fish (2), including English sole
(18-20,34) and white croaker (20,24).

Risk factors were shown in all three
species, again with indices ofPAH exposure
most frequently identified. Sediment PAHs
were risk factors in sole and flounder; this
association was further supported by PAHs
as risk factors in sole stomach contents.
Concentrations of sediment XPAHs at
English sole sites have been outlined above
and are toxicologically significant; for
flounder sites, sediment XPAH levels
ranged from 5 to 10,300 ng/g, the latter
level interpreted as toxicologically signifi-
cant. The role of PAH exposure in the eti-
ology of lesions in this category is further
supported in all three species by the associa-
tion between SDN and at least one biliary
FACs measure; both measures were risk
factors in sole and croaker.

Consistent with their covariance with
sediment PAHs, XPCBs was also a risk
factor for SDN in all three species; this

relationship was supported by XPCB
bioaccumulation (all species) and dietary
exposure (sole and croaker) as risk factors.
Concentrations of XPCBs in these com-
partments have been cited above for sole
and croaker (except liver levels, <15,000
ng/g in croaker) and are interpreted as tox-
icologically relevant; sediment XPCB levels
at flounder sites ranged from 1 to 140
ng/g, with hepatic levels ranging from 230
to 7000 ng/g. This level of exposure and
extent of hepatic bioaccumulation is also
toxicologically meaningful, considering
that experimental PCB exposure in mam-
mals (8,101,106,10) and fish (108) can
induce similar hepatic lesions.

XDDTs in sediments, stomach con-
tents, and liver were also consistent risk
factors for SDN in sole and croaker.
Although levels covaried with XPCBs
within each compartment measured for
croaker, XDDTs typically accounted for a
higher proportion of the intersite preva-
lence variation for this lesion category than
did XPCBs, suggesting exposure to
XDDTs is a more likely factor in the etiol-
ogy of SDN in croaker. Dietary exposure
to and hepatic bioaccumulation of
,DDTs (up to 7,600 ng/g and 26,000
ng/g, respectively) are certainly high
enough to have toxicologic significance.
Hepatocellular cytomegaly and kary-
omegaly have been experimentally induced
in mice by exposure to DDT (8).

Non-DDT pesticides were potential risk
factors for SDN in all species. However,
they were not consistently identified among
the compartments when consistency would
be expected on the basis of significant corre-
lations among the compartments (40), and
levels detected were quite low. Because of
this inconsistency, absence as a risk factor in
liver, and the relatively low levels detected
(<3 ng/g, sole sites; <15 ng/g, croaker sites,
in sediments, <50 ng/g, sole; 160 ng/g,
croaker, in stomach contents), chlordanes
are not a meaningful risk factor in sole and
croaker. Hepatic levels of chlordanes and
dieldrin were risk factors in flounder, with
maximal levels of 330 and 300 ng/g, respec-
tively, indicating a degree of hepatic bioac-
cumulation. Dieldrin has induced hepato-
cellular hypertrophy in mammals (10-9) as
well as necrosis, and hepatocellular vacuolar
degeneration, hypertrophy, and pleomor-
phism in fish (110); it is also considered
hepatocarcinogenic in mice (111). Chlor-
danes have also induced liver lesions in
mammals (112), and fish (113), and are epi-
genetic promoters of carcinogenesis (86).
The hepatic levels detected suggest that
these pesticides could be factors in the gene-
sis ofSDN in flounder.

Although metals 1 was a potential risk
factor for SDN in all species, because of
the strong covariance with more toxicolog-
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ically relevant risk factors such as PAHs,
XDDTs, XPCBs (40), it is not regarded as
meaningful. Metals 2 in liver (<59 ng/g) as
a risk factor for SDN in croaker is also not
toxicologically relevant and exists only
because of its strong correlation with liver
XDDTs (40).

Necrosis. Chemical risk factors were
rarely and inconsistently identified for the
nonspecific necrotic lesions, represented
primarily by hepatocellular coagulative
necrosis. Although this lesion is regarded as
a potential biomarker of contaminant expo-
sure in wild fish that needs further confir-
mation (2), inconsistent statistical associa-
tions have been shown between this lesion
category in several species and contaminant
exposure in field studies conducted by our
group (20,21,24). In this study, the only
risk factor common to more than one
species (sole and croaker) was hepatic
bioaccumulation of XDDTs; there were no
other risk factors in sole. The hepatotoxici-
ty of DDTs in mammals and fish has been
previously discussed. Other risk factors
associated with necrosis in croaker were
PAHs and XPCBs in sediment (at toxico-
logically significant levels), biliary FACs-H,
and hexachlorobenzene in stomach con-
tents. Despite the hepatotoxic potential of
hexachlorobenzene (94), the low levels
detected in croaker stomachs (<10 ng/g)
suggest it is not a meaningful risk factor.
Similarly, the toxicologic relevance of met-
als 1 in liver as an etiologic factor in floun-
der is questionable because these trace ele-
ments are not hepatotoxicants (97), and
levels were relatively low (<280 ng/g ).
Excepting XDDTs, no contaminant class
was consistently and meaningfully associat-
ed with necrosis in more than one species.
We therefore regard this lesion as a less reli-
able biomarker of contaminant exposure,
even in species that are apparently suscepti-
ble to the effects of such exposure as
evinced by the presence of other lesions.

Hydropic vacuolation. Multiple chemi-
cal risk factors for HydVac were identified
in both affected species, flounder and
croaker. We are not aware of an analogous
lesion experimentally induced by exposure
to identified toxicants in any vertebrate.
The lesion is presumably degenerative, with
limited proliferative potential (49,52),
affecting biliary epithelial cells and hepato-
cytes in winter flounder (27-29,49-52),
white perch (114), starry flounder and rock
sole (34,50), and white croaker. However,
unlike winter flounder (27,29,49,52) this
lesion in starry flounder and croaker neither
co-occurs nor is found in close proximity
with neoplasms. The geographic distribu-
tion of affected winter flounder (27,28,
31,32), rock sole, and starry flounder (34)
and the statistical association of this lesion
with indices of contaminant exposure in

winter flounder (31,34 and starry flounder
(34) strongly indicate HydVac is a reliable,
specific biomarker of contaminant exposure
effects in certain species of wild fish.
Chemical risk factors in winter flounder are
PAHs, XDDTs, and chlordanes (31,32); in
starry flounder from Puget Sound it is asso-
ciated with PAH exposure, as reflected in
biliary FACs-H levels (34). In general, the
data here reinforce these relationships. In
support of the association shown here
between HydVac and levels of biliary
FACs-L and FACs-H in starry flounder,
potential exposure to PAHs in sediment
and dietary uptake were also risk factors. In
contrast, the only risk factor of PAH expo-
sure in croaker was levels of biliary FACs-L.
This latter finding in croaker is not surpris-
ing in view of the lack of correlation
between the FACs measures and PAHs in
sediments or stomach contents (40).

Exposure to CHs occurred most fre-
quently and consistently as risk factors for
HydVac in both species. Risk factors of
exposure at levels of toxicologic significance
were XDDTs in sediment (croaker only,
<670 ng/g), liver (both species, <26,000
ng/g in croaker, <2,000 ng/g in flounder),
and stomach contents (both species,
<7,600 ng/g in croaker, <140 ng/g in
flounder), and XPCBs in sediment (<430
ng/g at croaker sites, <260 ng/g at flounder
sites), liver (<15,000 ng/g in croaker,
<7,000 ng/g in flounder), and stomach
contents (<3,500 ng/g in croaker, <490
ng/g in flounder) in both species. Actual
exposure to non-DDT pesticides, including
hexachlorobenzene, chlordanes, and dield-
rin, were also consistent risk factors in both
species. In flounder, hepatic levels of chlor-
danes and dieldrin were as high as 330 ng/g
and 300 ng/g, respectively, while chlor-
danes in stomach contents (<17 ng/g) and
hexachlorobenzene in sediment (<1 ng/g)
were quite low. In croaker, non-DDT pes-
ticide risk factors were chlordanes in sedi-
ment (<11 ng/g), stomach contents (<160
ng/g), and liver (<1,700 ng/g), dieldrin in
liver (<350 ng/g), and hexachlorobenzene
in sediments (<1 ng/g ). Therefore, hexa-
chlorobenzene exposure appears to have no
toxicologic significance in croaker. Based
on the relatively high hepatic levels of
chlordanes and dieldrin, these chemicals
cannot be disregarded as toxicologically sig-
nificant risk factors in either species.
However, experimental attempts to induce
this lesion in winter flounder by intraperi-
toneal injection or dietary exposure to high
levels of chlordanes were unsuccessful (28).
Metals 1 in sediments as a risk factor in
both species is also probably of no toxico-
logic significance; it simply is a factor
covarying with the PAHs and XPCBs (40).
Similarly, metals 2 in liver as a risk factor in
croaker is probably not significant consider-

ing the low levels detected (<60 ng/g) and
its strong correlation with hepatic XPCBs,
a more toxicologically plausible risk factor
(40).

Therefore, exposure to and uptake of
EXPCBs, XDDTs, chlordanes, dieldrin, and
PAHs are the most toxicologically relevant
risk factors for HydVac consistently shown
in both species. These risk factors generally
align with the hypothesis (51) that this
lesion is related to organochlorine exposure
and with subsequent hypotheses put forth
by Moore (28,29,49,52) stressing the
potential role of epigenetic promoting com-
pounds in its genesis in winter flounder.
However, the potential role of PAH expo-
sure in its etiology should not be mini-
mized, considering the low prevalence
(<7%) detected in winter flounder from a
site in New Bedford Harbor (31,32) that
had relatively high sediment levels of PCBs
(3000 ng/g) and low to moderate concen-
trations of sediment PAHs (<2500 ng/g
HAHs, <500 ng/g LAWs). Clarification of
the role PAH exposure plays in the devel-
opment of this lesion is further complicated
by the unsuccessful experimental induction
attempts in winter flounder by chronic
dietary exposure to benzo[a]pyrene (28).
Because PCBs and DDTs are readily taken
up and bioaccumulated but slowly metabo-
lized, hepatic concentrations of these and
other chlorinated compounds may reflect
chronic exposure to other covariant conta-
minants in sediments that are readily
metabolized but not bioaccumulated, such
as PAHs (115). Future incorporation of
biomarkers measured in individual fish
such as xenobiotic-DNA adducts (116),
which appear to be persistent and thus esti-
mate chronic exposure to PAHs, should
clarify the relative importance of PAHs,
and chlorinated hydrocarbons in the devel-
opment of HydVac and other hepatic
lesions. Laboratory studies with starry and
winter flounders and croaker exposed to
whole sediments, organic-solvent extracts of
urban sediments from sites showing high
prevalences of this lesion, or model com-
pounds or mixtures are needed to defini-
tively determine how various classes of
PAHs and chlorinated hydrocarbons, act-
ing either alone or together, contribute to
the genesis of HydVac in teleosts as well as
the other lesions detected in this study.

Conclusion
In a comprehensive histopathological and
epizootiological study of English sole, star-
ry flounder, and white croaker sampled at
sites on the Pacific Coast of the United
States, significant prevalences of toxico-
pathic liver lesions were detected, primarily
in fish from urban sites. Many sites showed
significantly higher relative risks for at least
one lesion type, while controlling for age
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and gender. Of greatest importance was
the demonstration of positive statistical
associations between exposure to contami-
nant classes and increased lesion risk in all
three species. Prevalences of lesions placed
in the categories of neoplasms, foci of cel-
lular alteration, nonneoplastic proliferative
lesions, specific degeneration/necrosis, and
hydropic vacuolation were most common-
ly associated with exposure to and uptake
and metabolism of PAHs, XPCBs, and
YDDTs at exposure or bioaccumulation
levels of potential toxicological signifi-
cance. Chemical risk factors were less com-
monly identified for nonspecific necrotic
lesions. Non-DDT pesticides (chlordanes
and dieldrin) were toxicologically relevant
risk factors only for specific degen-
eration/necrosis in a single species (floun-
der) and for hydropic vacuolation in floun-
der and croaker.

An important caveat to the utility of
these lesions in wild fish as biomarkers of
contaminant exposure is that fish age must
be accounted for in any analyses compar-
ing lesion risk to site of capture or chemi-
cal risk factors. Age is a factor strongly
influencing the probability of occurrence
of hepatic neoplasms, foci of cellular alter-
ation, nonneoplastic proliferative lesions,
and hydropic vacuolation in several spe-
cies. Gender was not a meaningful risk fac-
tor for any lesion.

Not all lesions were detected or consis-
tently associated with exposure to particu-
lar contaminants in the species examined,
suggesting that not all teleosts respond
similarly to exposure to the same classes of
toxicants (74), and not all lesions identi-
fied in this and similar studies can be reli-
ably used as histopathologic biomarkers of
contaminant exposure in all species. In
English sole, neoplasms, foci of cellular
alteration, nonneoplastic proliferative
lesions, and specific degeneration/necrosis
were meaningfully associated with expo-
sure to PAHs and hepatic bioaccumulation
of XPCBs and XDDTs; nonspecific nec-
rotic lesions were only associated with
hepatic bioaccumulation of XDDTs. In
starry flounder, reliable biomarkers of asso-
ciated contaminant exposure were hydrop-
ic vacuolation ( PAH exposure, and hepat-
ic bioaccumulation of XPCBs, XDDTs,
chlordanes and dieldrin), foci of cellular
alteration (dietary uptake of XPCBs and
YDDTs), and specific degeneration/necro-
sis (potential exposure to PAHs and
XPCBs, and hepatic bioaccumulation of
XPCBs, chlordanes and dieldrin). All
lesions in white croaker except neoplasms
were associated with exposure to at least
one contaminant class. Specifically, these
were foci of cellular alteration (potential
and actual PAH exposure), nonneoplastic
proliferative lesions (potential and actual

PAH exposure, potential exposure to and
dietary uptake of XPCBs, and potential
exposure to and dietary uptake and hepatic
bioaccumulation of XDDTs), specific
degenerative/necrotic lesions (actual PAH
exposure and potential exposure to and
dietary uptake and hepatic bioaccumula-
tion of XPCBs and XDDTs), nonspecific
necrotic lesions (potential and actual PAH
exposure, potential exposure to XPCBs,
and hepatic bioaccumulation of XDDTs);
and hydropic vacuolation (actual PAH
exposure, potential exposure to and hepatic
bioaccumulation of XPCBs, XDDTs,
chlordane and dieldrin).

Because the PAHs, XPCBs, XDDTs,
chlordanes, dieldrin, and metals 1 typically
covaried in sediments, stomach contents,
or liver/bile (PAHs and their metabolites),
it is clear that bottomfish in this study are
exposed simultaneously to a complex mix-
ture of contaminants. Therefore, quantifi-
cation of the relative contribution of any
significant chemical risk factor with respect
to the etiology of hepatic lesions is not pos-
sible solely on the basis of epizootiological
data. The existence of the XPCBs and
YDDTs as strong risk factors for several
classes of hepatic lesions in all three species
may be due to their well-known bioaccu-
mulation and persistence in fish tissue,
thus serving as general indices of long-term
exposure not only to CHs but other co-
varying contaminants such as PAHs (115).
Ongoing field studies that measure these
contaminants (including congener-specific
coplanar PCBs) and biomarkers of conta-
minant response (e.g., hepatic aryl hydro-
carbon hydroxylase activity, xenobiotic-
DNA adducts) in individual fish also
assessed histopathologically will further
enhance our ability to identify relation-
ships between environmental contaminants
and toxicopathic hepatic lesions in native
fish species, as well as to account for the
confounding effects of fish migration.
Ultimately, laboratory exposure studies are
essential to conclusively establish the roles
of specific toxicants in the etiology of pol-
lution-associated disease in wild fish.
However, the existence of toxicologically
plausible and statistically significant and
consistent relationships between these risk
factors and hepatic lesions provides strong
epizootiological evidence supporting the
role of chemical contaminants in the etiol-
ogy of these lesions and clearly indicates
their utility as biomarkers of contaminant
exposure effects in native fish species sam-
pled in biomonitoring studies.
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